Selasa, 22 April 2014


SEL

Sel adalah unit organisasi terkecil yang menjadi dasar kehidupan dalam arti. Semua fungsi kehidupan diatur dan berlangsung di dalam sel. Karena itulah, sel dapat berfungsi secara asalkan seluruh kebutuhan hidupnya terpenuhi.
Sel merupakan kesatuan struktural dan fungsional makhluk hidup, yang mengandung pengertian sebagai penyusun makhluk hidup dan melaksanakan semua fungsi kehidupan (faal tubuh). Berdasar jumlah sel penyusunnya makhluk hidup dapat digolongkan menjadi makhluk hidup uniseluler dan multiseluler. Makhluk hidup multiseluler berasal dari satu sel (zigot) yang kemudian mengalami spesialisasi dan diferensiasi. Struktur sel terdiri dari nukleus (inti sel), sitoplasma beserta organelnya,membran sel dan dinding sel. Sel yang mempunyai fungsi khusus biasanya dilengkapi dengan organel khusus yang tidak ditemukan pada sel lain.
sel sarafSel bisa diartikan sebagai gumpalan dari protoplasma yang berinti dan berfungsi sebagai komponen atau alat dalam membantu penyelenggaraan segala aktivitas untuk kebutuhan hidupnya. Selama pertumbuhan, sel akan berubah seiring dengan perkembangannya baik dari bentuk untuk menyesuaikan dengan fungsinya. Bentuk sel bisa epidermis, hal ini akan melindungi sel-sel lain dalam menyimpan persediaan makanan.
Sel berasal dari kata cella dimana memiliki arti sekumpulan partikel-partikel yang berukuran kecil dan membentuk suatu kesatuan terkecil dari makhluk hidup agar dapat melaksanakan suatu kehidupan. Pengertian sel sendiri mencakup dari beberapa hal yang berasal dari empat teori yakni unit struktural terkecil dari makhluk hidup, unit fungsional terkecil dari mahkluk hidup, pertumbuhan terkecil dari suatu makhluk hidup, serta unit hereditas terkecil dari mahkluk hidup.

Pengertian Sel Menurut Beberapa Ahli

Sel dilihat pertama oleh Aristoteles (384 – 322 SM). Dia menyatakan bahwa semua makhluk hidup tersusun dari suatu benda hidup atau unit struktural yang mempengaruhi kehidupan suatu organisme. Pada saat ini belum dikenal kata “sel” dari unit structural tersebut.
Robert HookeRobert Hooke (1665 M), Dialah orang yang pertama kali yang menamakan unit structural tersebut sebagai “sel”. Beberapa investigator dari tahun 1665 s/d 1831 yang mempelajari sel, Tak satupun yang dapat menyimpulkan bahwa benda hidup tersebut tersusun dari unit atau sel yang serupa.
Pada tahun 1938 – 1939 M, dua orang ahli biologis yaitu M.J.Schleiden (ahli Botani) dan Theodore Schwann (ahli Zoologi) Mendefinisikan secara jelas tentang sel. Menurut mereka sel adalah unit struktural dan unit fungsional dari organisme hidup.
Sejak tahun 1955, berkembanglah teori sel modern, yaitu:
  • Sel adalah unit structural dari makhluk hidup.
  • Sel adalah unit fungsionla dari makhluk hidup.
  • Sel adalah pembawa sifat dari makhluk
  • Sel baru berasal dari sel itu sendiri (pembelahan sel).
  • Setiap sel mempunyai aksi dan tugas secara bebas sebagai bagian integral dari organisme lengkap.

Ukuran Sel

  • Ukuran dan Bentuk Sel : Ukuran sel biasanya bevariasi antara 10 µm – 100 µm.
  • Ukuran sel yang terkecil pada Pleuropneumonia yaitu 0,1 – 0,5 µm.
  • Ukuran sel yang terpanjang pada serat Sclerenchymatous pada Boehmenia nevia, yaitu ± 55 cm.

Jumlah Sel

  • Protozoa, bakteri, fungi dan alga bersel satu. Mereka disebut sebagai bentuk uniseluler atau aseluler.
  • Sebagian besar Kingdom animalia dan Kingdom Plantae dan sebagaian besar Kingdom Fungi terdiri beberapa sel, mereka dikatakan sebagai organisme multiseluler.

Type Sel

Berdasarkan strukturnya, sel terbagi ke dalam dua type, yaitu:
  • Sel Prokariotik; yaitu sel dimana mitokondria, kloroplas, dan nucleus tidak terlihat secara jelas. Type sel ini ditemukan pada bakteri dan alga biru hijau yang tergolong dalam kingdom Monera .
  • Sel Eukariotik; yaitu sel dimana batas nucleus dan membrane tampak secara jelas. Type sel ini ditemukan pada semua Kingdom Protista , Kingdom Fungi , Kingdom Plantae dan Animalia

2. Sejarah Sel




Penemuan awal

Mikroskop majemuk dengan dua lensa telah ditemukan pada akhir abad ke-16 dan selanjutnya dikembangkan di Belanda, Italia, dan Inggris. Hingga pertengahan abad ke-17 mikroskop sudah memiliki kemampuan perbesaran citra sampai 30 kali. Ilmuwan Inggris Robert Hooke kemudian merancang mikroskop majemuk yang memiliki sumber cahaya sendiri sehingga lebih mudah digunakan. Ia mengamati irisan-irisan tipis gabus melalui mikroskop dan menjabarkan struktur mikroskopik gabus sebagai "berpori-pori seperti sarang lebah tetapi pori-porinya tidak beraturan" dalam makalah yang diterbitkan pada tahun 1665. Hooke menyebut pori-pori itu cells karena mirip dengan sel (bilik kecil) di dalam biara atau penjara. Yang sebenarnya dilihat oleh Hooke adalah dinding sel kosong yang melingkupi sel-sel mati pada gabus yang berasal dari kulit pohon ek. Ia juga mengamati bahwa di dalam tumbuhan hijau terdapat sel yang berisi cairan.
Pada masa yang sama di Belanda, Antony van Leeuwenhoek, seorang pedagang kain, menciptakan mikroskopnya sendiri yang berlensa satu dan menggunakannya untuk mengamati berbagai hal. Ia berhasil melihat sel darah merah, spermatozoid, khamir bersel tunggal, protozoa, dan bahkan bakteri. Pada tahun 1673 ia mulai mengirimkan surat yang memerinci kegiatannya kepada Royal Society, perkumpulan ilmiah Inggris, yang lalu menerbitkannya. Pada salah satu suratnya, Leeuwenhoek menggambarkan sesuatu yang bergerak-gerak di dalam air liur yang diamatinya di bawah mikroskop. Ia menyebutnya diertjen atau dierken (bahasa Belanda: 'hewan kecil', diterjemahkan sebagaianimalcule dalam bahasa Inggris oleh Royal Society), yang diyakini sebagai bakteri oleh ilmuwan modern.
Pada tahun 1675–1679, ilmuwan Italia Marcello Malpighi menjabarkan unit penyusun tumbuhan yang ia sebut utricle ('kantong kecil'). Menurut pengamatannya, setiap rongga tersebut berisi cairan dan dikelilingi oleh dinding yang kokoh. Nehemiah Grew dari Inggris juga menjabarkan sel tumbuhan dalam tulisannya yang diterbitkan pada tahun 1682, dan ia berhasil mengamati banyak struktur hijau kecil di dalam sel-sel daun tumbuhan, yaitu kloroplas.

Teori sel

Dua ratus tahun kemudian, yakni sekitar tahun 1835, seorang ilmuan Prancis yang bernama Felix Dujardin meneliti bahwa sel-sel tersebut tersusun atas substansi berupa cairan. Cairan tersebut dikenal dengan istilah Protoplasma. Istilah Protoplasma kali ini dikemukakan oleh Johannes Purkinje.
Beberapa ilmuwan pada abad ke-18 dan awal abad ke-19 telah berspekulasi atau mengamati bahwa tumbuhan dan hewan tersusun atas sel, namun hal tersebut masih diperdebatkan pada saat itu. Pada tahun 1838, ahli botani Jerman Matthias Jakob Schleiden menyatakan bahwa semua tumbuhan terdiri atas sel dan bahwa semua aspek fungsi tubuh tumbuhan pada dasarnya merupakan manifestasi aktivitas sel. Ia juga menyatakan pentingnya nukleus (yang ditemukan Robert Brown pada tahun 1831) dalam fungsi dan pembentukan sel, namun ia salah mengira bahwa sel terbentuk dari nukleus. Pada tahun 1839, Theodor Schwann, yang setelah berdiskusi dengan Schleiden menyadari bahwa ia pernah mengamati nukleus sel hewan sebagaimana Schleiden mengamatinya pada tumbuhan, menyatakan bahwa semua bagian tubuh hewan juga tersusun atas sel. Menurutnya, prinsip universal pembentukan berbagai bagian tubuh semua organisme adalah pembentukan sel.
Yang kemudian memerinci teori sel sebagaimana yang dikenal dalam bentuk modern ialah Rudolf Virchow, seorang ilmuwan Jerman lainnya. Pada mulanya ia sependapat dengan Schleiden mengenai pembentukan sel. Namun, pengamatan mikroskopis atas berbagai proses patologis membuatnya menyimpulkan hal yang sama dengan yang telah disimpulkan oleh Robert Remak dari pengamatannya terhadap sel darah merah dan embrio, yaitu bahwa sel berasal dari sel lain melalui pembelahan sel. Pada tahun 1855, Virchow menerbitkan makalahnya yang memuat motonya yang terkenal, omnis cellula e cellula (semua sel berasal dari sel).

Perkembangan biologi sel

Antara tahun 1875 dan 1895, terjadi berbagai penemuan mengenai fenomena seluler dasar, seperti mitosis, meiosis, dan fertilisasi, serta berbagai organel penting, seperti mitokondria, kloroplas, danbadan Golgi. Lahirlah bidang yang mempelajari sel, yang saat itu disebut sitologi.
Perkembangan teknik baru, terutama fraksinasi sel dan mikroskopi elektron, memungkinkan sitologi dan biokimia melahirkan bidang baru yang disebut biologi sel. Pada tahun 1960, perhimpunan ilmiah American Society for Cell Biology didirikan di New York, Amerika Serikat, dan tidak lama setelahnya, jurnal ilmiah Journal of Biochemical and Biophysical Cytology berganti nama menjadiJournal of Cell Biology. Pada akhir dekade 1960-an, biologi sel telah menjadi suatu disiplin ilmu yang mapan, dengan perhimpunan dan publikasi ilmiahnya sendiri serta memiliki misi mengungkapkan mekanisme fungsi organel sel.

3. Bagian-Bagian Sel




a. Membran plasma

  1. Mengatur lalu lintas senyawa-senyawa atau ion-ion yang masuk dan keluar sel atau organel
  2. Sebagai reseptor (pengenal) molekul-molekul khusus (hormon) metabolit dll dan agensia khas seperti bakteri dan virus
  3. Tempat berlangsunya berbgai reaksi kimia seperti pada membran motokondria, kloroplas, retikulum endoplasma dan lain-lain,
  4. Membran plasma juga berfungsi sebagai reseptor perubahan lingkungan sel, seperti perubahan suhu, intensitas cahaya dan lain-lain.

b. Dinding sel

Fungsi dinding sel pada tumbuhan adalah untuk memperkokoh sel sebagaimana sel tulang pada hewan.

c. Sitoplasma dan nukleoplasma

Fungsi nucleolus adalah tempat perakitan ribosom.

Rabu, 09 April 2014

Hukum III Newton

 kita belajar bahwa gaya-gaya mempengaruhi gerakan benda. Dari manakah gaya tersebut datang ? dalam kehidupan sehari-hari, kita mengamati bahwa gaya yang diberikan kepada sebuah benda, selalu berasal dari benda lain. gerobak bergerak karena kita yang mendorong, paku dapat tertanam karena dipukul dengan martil, buah mangga yang lezat jatuh karena ditarik oleh gravitasi bumi, demikian juga benda yang terbuat dari besi ditarik oleh magnet. Apakah semua benda bergerak karena diberikan gaya oleh benda lain ?
Eyang Newton mengatakan bahwa kenyataan dalam kehidupan sehari-hari tidak semuanya seperti itu. Ketika sebuah benda memberikan gaya kepada benda lain maka benda kedua tersebut membalas dengan memberikan gaya kepada benda pertama, di mana gaya yang diberikan sama besar tetapi berlawanan arah. Jadi gaya yang bekerja pada sebuah benda merupakan hasil interaksi dengan benda lain. Anda dapat melakukan percobaan untuk membuktikan hal ini. Tendanglah batu atau tembok dengan keras, maka kaki anda akan terasa sakit (jangan dilakukan). Mengapa kaki terasa sakit ? hal ini disebabkan karena ketika kita menendang tembok atau batu, tembok atau batu membalas memberikan gaya kepada kaki kita, di mana besar gaya tersebut sama, hanya berlawanan arah. Gaya yang kita berikan arahnya menuju batu atau tembok, sedangkan gaya yang diberikan oleh batu atau tembok arahnya menuju kaki kita. Ketika kita menendang bola, gaya yang kita berikan tersebut menggerakan bola. Pada saat yang sama, kita merasa gaya dari bola menekan kaki kita. Jika anda punya skate board, lakukanlah percobaan berikut ini sehingga semakin menambah pemahaman anda. letakan papan luncur alias skate board di dekat sebuah tembok. Berdirilah di atas skate board (papan luncur) tersebut dan doronglah tembok dihadapan anda. Apa yang anda alami ? skate board tersebut meluncur ke belakang. Aneh khan ? padahal anda tidak mendorong skate board ke belakang. Skate board meluncur ke belakang karena tembok yang anda dorong membalas memberikan gaya dorong kepada anda, di mana arah gaya yang diberikan tembok berlawanan arah dengan arah dorongan anda. anda mendorong tembok ke depan, sedangkan tembok mendorong anda ke belakang sehingga skate board kesayangan anda meluncur ke belakang. Jika anda tinggal di tepi pantai dan termasuk anak pantai, lakukanlah percobaan dengan menaiki perahu dan melemparkan sesuatu, entah batu atau benda lain ke luar dari perahu. Lakukanlah hal ini ketika perahu sedang diam. Amati bahwa perahu akan bergerak ke belakang jika anda melempar ke depan, dan sebaliknya. Serius… diriku pernah mencobanya. Nah, semua penjelasan panjang lebar ini adalah inti Hukum III Newton.

Gerak Lurus Beraturan (GLB)

Gerak lurus beraturan (GLB) adalah gerak suatu benda yang menempuh lintasan lurus yang dalam waktu sama benda menempuh jarak yang sama. Gerak lurus beraturan (GLB) juga dapat didefinisikan sebagai gerak suatu benda yang menempuh lintasan lurus dengan kelajuan tetap.
Dalam kehidupan sehari-hari, jarang ditemui contoh benda yang bergerak lurus dengan kecepatan tetap. Misalnya, sebuah mobil yang bergerak dengan kelajuan 80 km/jam, kadang-kadang harus memperlambat kendaraannya ketika ada kendaraan lain di depannya atau bahkan dipercepat untuk mendahuluinya.
Gerak lurus kereta api dan gerak mobil di jalan tol yang bergerak secara stabil bisa dianggap sebagai contoh  gerak lurus dalam keseharian.

Untuk lebih jelasnya lihat gambar berikut.
GLB, gerak lurus beraturan
Kedudukan sebuah mobil yang sedang bergerak lurus beraturan
Dari gambar di atas, tampak bahwa setiap perubahan 1 sekon, mobil tersebut menempuh jarak yang sama, yaitu 10 m.
Dengan kata lain mobil tersebut mempunyai kecepatan yang sama, yaitu 10 m/s.

Grafik jarak terhadap waktu untuk gerak lurus beraturan
Sebuah mobil bergerak lurus dengan kecepatan tetap yaitu 10 m/s dapat ditunjukkan dengan tabel dan grafik sebagai berikut.
gerak lurus beraturan, glb
Tabel hubungan waktu dan jarak pada GLB
gerak lurus beraturan, glb
grafik hubungan waktu dan jarak pada GLB

Pada gerak luru beraturan, berlaku persamaan :
rumus kecepatan, glb, gerak lurus beraturan
dengan
v = kecepatan (m/s)
s = perpindahan (m)
t = waktu yang diperlukan (s)
Dari persamaan itu, dapat dicari posisi suatu benda yang dirumuskan dengan :
s = v.t

 Hukum Newton II

 menyatakan bahwa jika resultan gaya yang bekerja pada sebuah benda tidak sama dengan nol maka benda akan mengalami percepatan. Besar percepatan sebanding dengan besar gaya total dan berbanding terbalik dengan massa benda. Arah percepatan sama dengan arah gaya total.
Hukum-II-Newton-1Jika besar percepatan sama dengan nol maka persamaan hukum II Newton berubah menjadi persamaan hukum I Newton. Jadi hukum I Newton merupakan kasus khusus dari hukum II Newton.
Berdasarkan persamaan di atas disimpulkan bahwa semakin besar gaya, semakin besar percepatan. Sebaliknya semakin besar massa, semakin kecil percepatan. Hubungan antara gaya, massa dan percepatan lebih dipahami setelah anda melakukan percobaan berkaitan dengan hal ini. Salah satu percobaan yang dapat dilakukan adalah percobaan mempercepat kereta dinamika di atas rel menggunakan beban bermassa yang jatuh bebas. Gunakan ticker timer untuk mengetahui besar percepatan kereta.
Hidrolisasi Garam
Pengertian Hidrolisis
Hidrolisis berasal dari kata hidro yaitu air dan lisis berarti penguraian, berarti hidrolisis garam adalah penguraian garam oleh air yang menghasilkan asam dan basanya kembali
2.1 GARAM DARI ASAM KUAT DAN BASA KUAT
Larutan garam ini bersifat NETRAL. Sebagai contoh, reaksi netralisasi antara NaOH dan HCl menghasilkan garam NaCl. Didalam air, NaCl terionisasi sempurna menghasilkan ion Na+ dan Cl-.
NaOH (aq) + Hcl (aq) → NaCl (aq) + H2O (l)
basa kuat + asam kuat             netral
NaCl (aq) → Na+ (aq) + Cl- (aq) 
ion Na+ berasal dari basa kuat dan ion Cl- juga berasal dari asam kuat, jadi kedua ion tersebut merupakan asam dan basa Bronsted-Lowry lemah sehinga keduanya tidak bereaksi dalam air (tidak terhidrolisis). Oleh karena itu larutan bersifat netral atau pH = 7.
 
2.2 GARAM DARI ASAM KUAT DAN BASA LEMAH
Konsep
Larutan garam yang berasal dari asam kuat dan basa lemah ini bersifat ASAM. Sebagai contoh adalah NH4Cl, garam ini terbentuk dari hasil reaksi netralisasi antara NH3 dan HCl dan didalam air terionisasi sempurna menghasilkan ion NH4+ dan Cl-
NH3 (aq) + HCl (aq) → NH4Cl (aq)
basa lemah asam kuat asam
NH4Cl (aq) → NH4+ (aq) + Cl- (aq)
ion Cl- berasal dari asam kuat, merupakan Bronsted-Lowry lemah sehingga tidak bereaksi dengan air (tidak mampu menarik ion H+), sedangkan ion NH4+ berasal dari basa lemah, jadi merupakan asam Bronsted-Lowry kuat sehingga dapat bereaksi dengan air (terhidrolisis) atau memberikan ion H+ kepada air.
NH4+ (aq) + H2O (l) ↔ NH3 (aq) + H3O+ (l)
karena ion NH4+ dapat memberikan dapat memberikan ion H+ kepada air maka larutan menjadi bersifat ASAM dan diketahui harga Ka (konstanta ionisasi asam) dari kesetimbangan diatas adalah 5,6 x 10-10.
Penentuan pH
untuk memahami penentuan pH garam yang berasal dari asam kuat dan basa lemah, perhatikan contoh berikut ;
jika diketahui 0,1 M NaCH3COO dan Ka CH3COO = 1,8 x 10-5, maka di dalam air garam NaCH3COO terionisasi sempurna dengan persamaan reaksi berikut,
NaCH3COO (aq) → Na+ (aq) + CH3COO- (aq)
karena koefisian NaCH3COO dan CH3COO- sama, maka [CH3COO- ] = [ NaCH3COO] = 0,1 M
ion CH3COO- mengalami hidrolisis sebagai berikut,
CH3COO- (aq) + H20 (l) ↔ CH3COOH- (aq) + OH (aq)
persamaan hidrolisisnya adalah sebagai berikut,
Kh = [ CH3COOH][OH-] / [CH3COO-]
 
2.3 ASAM LEMAH DAN BASA KUAT